Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMJ Open ; 12(12): e067251, 2022 12 20.
Article in English | MEDLINE | ID: covidwho-2193801

ABSTRACT

INTRODUCTION: Sepsis is a major cause of death among hospitalised patients. Accumulating evidence suggests that immune response during sepsis cascade lies within a spectrum of dysregulated host responses. On the one side of the spectrum there are patients whose response is characterised by fulminant hyperinflammation or macrophage activation-like syndrome (MALS), and on the other side patients whose immune response is characterised by immunoparalysis. A sizeable group of patients are situated between the two extremes. Recognising immune endotype is very important in order to choose the appropriate immunotherapeutic approach for each patient resulting in the best chance to improve the outcome. METHODS AND ANALYSIS: ImmunoSep is a randomised placebo-controlled phase 2 clinical trial with a double-dummy design in which the effect of precision immunotherapy on sepsis phenotypes with MALS and immunoparalysis is studied. Patients are stratified using biomarkers. Specifically, 280 patients will be 1:1 randomly assigned to placebo or active immunotherapy as adjunct to standard-of-care treatment. In the active immunotherapy arm, patients with MALS will receive anakinra (recombinant interleukin-1 receptor antagonist) intravenously, and patients with immunoparalysis will receive subcutaneous recombinant human interferon-gamma. Τhe primary endpoint is the comparative decrease of the mean total Sequential Organ Failure Assessment score by at least 1.4 points by day 9 from randomisation. ETHICS AND DISSEMINATION: The protocol is approved by the German Federal Institute for Drugs and Medical Devices; the National Ethics Committee of Greece and by the National Organization for Medicines of Greece; the Central Committee on Research Involving Human Subjects and METC Oost Netherland for the Netherlands; the National Agency for Medicine and Medical Products of Romania; and the Commission Cantonale d'éthique de la recherche sur l'être human of Switzerland. The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04990232.


Subject(s)
COVID-19 , Sepsis , Humans , SARS-CoV-2 , Double-Blind Method , Sepsis/therapy , Treatment Outcome , Immunotherapy , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic
2.
Open Forum Infect Dis ; 9(12): ofac632, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2161132

ABSTRACT

Background: Large clinical trials on drugs for hospitalized coronavirus disease 2019 (COVID-19) patients have shown significant effects on mortality. There may be a discrepancy with the observed real-world effect. We describe the clinical characteristics and outcomes of hospitalized COVID-19 patients in the Netherlands during 4 pandemic waves and analyze the association of the newly introduced treatments with mortality, intensive care unit (ICU) admission, and discharge alive. Methods: We conducted a nationwide retrospective analysis of hospitalized COVID-19 patients between February 27, 2020, and December 31, 2021. Patients were categorized into waves and into treatment groups (hydroxychloroquine, remdesivir, neutralizing severe acute respiratory syndrome coronavirus 2 monoclonal antibodies, corticosteroids, and interleukin [IL]-6 antagonists). Four types of Cox regression analyses were used: unadjusted, adjusted, propensity matched, and propensity weighted. Results: Among 5643 patients from 11 hospitals, we observed a changing epidemiology during 4 pandemic waves, with a decrease in median age (67-64 years; P < .001), in in-hospital mortality on the ward (21%-15%; P < .001), and a trend in the ICU (24%-16%; P = .148). In ward patients, hydroxychloroquine was associated with increased mortality (1.54; 95% CI, 1.22-1.96), and remdesivir was associated with a higher rate of discharge alive within 29 days (1.16; 95% CI, 1.03-1.31). Corticosteroids were associated with a decrease in mortality (0.82; 95% CI, 0.69-0.96); the results of IL-6 antagonists were inconclusive. In patients directly admitted to the ICU, hydroxychloroquine, corticosteroids, and IL-6 antagonists were not associated with decreased mortality. Conclusions: Both remdesivir and corticosteroids were associated with better outcomes in ward patients with COVID-19. Continuous evaluation of real-world treatment effects is needed.

3.
PLoS Med ; 19(5): e1003991, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846918

ABSTRACT

BACKGROUND: Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS: In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS: Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Netherlands/epidemiology , Prospective Studies , SARS-CoV-2/genetics
5.
EBioMedicine ; 72: 103589, 2021 10.
Article in English | MEDLINE | ID: covidwho-1433161

ABSTRACT

BACKGROUND: To optimise the use of available SARS-CoV-2 vaccines, some advocate delaying second vaccination for individuals infected within six months. We studied whether post-vaccination immune response is equally potent in individuals infected over six months prior to vaccination. METHODS: We tested serum IgG binding to SARS-CoV-2 spike protein and neutralising capacity in 110 healthcare workers, before and after both BNT162b2 messenger RNA (mRNA) vaccinations. We compared outcomes between participants with more recent infection (n = 18, median two months, IQR 2-3), with infection-vaccination interval over six months (n = 19, median nine months, IQR 9-10), and to those not previously infected (n = 73). FINDINGS: Both recently and earlier infected participants showed comparable humoral immune responses after a single mRNA vaccination, while exceeding those of previously uninfected persons after two vaccinations with 2.5 fold (p = 0.003) and 3.4 fold (p < 0.001) for binding antibody levels, and 6.4 and 7.2 fold for neutralisation titres, respectively (both p < 0.001). The second vaccine dose yielded no further substantial improvement of the humoral response in the previously infected participants (0.97 fold, p = 0.92), while it was associated with a 4 fold increase in antibody binding levels and 18 fold increase in neutralisation titres in previously uninfected participants (both p < 0.001). Adjustment for potential confounding of sex and age did not affect these findings. INTERPRETATION: Delaying the second vaccination in individuals infected up to ten months prior may constitute a more efficient use of limited vaccine supplies. FUNDING: Netherlands Organization for Health Research and Development ZonMw; Corona Research Fund Amsterdam UMC; Bill & Melinda Gates Foundation.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/pharmacology , COVID-19 , SARS-CoV-2/immunology , Adult , BNT162 Vaccine , COVID-19 Vaccines/therapeutic use , Female , Health Personnel , Humans , Immunity, Humoral , Immunoglobulin G/blood , Male , Middle Aged , Netherlands , Prospective Studies , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL